LMx(Sp > Ca)I

Linear mixed, predominantly specific inhibition

Fingerprints of LMx(Sp>Ca)I: Dependence of the parameters on [X]
Fingerprints of LMx(Sp>Ca)I: Specific velocity plot and replot

Featured examples

#Enzyme
Species
EC no.ModifierSubstrate(1)Name given by authors(2)Reference (3)
1Peroxiredoxin
Homo sapiens
1.11.1.15Catechol H2O2Partial mixed type noncompetitive
inhibition
α = 2.2, KX = 1.8 mM
Chow
(2016)
2Alpha,alpha trehalase
Chironomus riparius
3.2.1.28Compound 7TrehaloseLinear mixed type inhibition
α = 5.8, KX = 34 mM
D'Adamio
(2015)
3Aminopeptidase N
Homo sapiens
3.4.11.2Cholic acidLeu-MetCompetitive-noncompetitive
linear mixed type inhibition
α = 9.0, KX = 0.91 mM
Nakanishi
(1989)
4Aminopeptidase N
Homo sapiens
3.4.11.2Deoxycholic acidLeu-MetCompetitive-noncompetitive
linear mixed type inhibition
α = 21, KX = 0.42 mM
Nakanishi
(1989)
5Aminopeptidase N
Homo sapiens
3.4.11.2Chenodeoxycholic acidLeu-MetCompetitive-noncompetitive
linear mixed type inhibition
α = 7.0, KX = 0.24 mM
Nakanishi
(1989)
6Aminopeptidase N
Homo sapiens
3.4.11.2Deoxycholic acid Leu-GlyCompetitive-noncompetitive
linear mixed type inhibition
α = 11, KX = 0.51 mM
Nakanishi
(1989)
7Acetylcholinesterase
Electrophorus electricus
3.1.1.7Pararosaniline AcetylthiocholineLinear mixed inhibition
α = 3.9, KX = 3.0 μM
Küçükkilinç
(2007)
8Cholinesterase
Homo sapiens
3.1.1.8PararosanilineButyrylthiocholineLinear mixed inhibition
α = 13, KX = 1.9 μM
Küçükkilinç
(2005)
9Cholinesterase
Homo sapiens
3.1.1.8Malachite greenButyrylthiocholineLinear mixed inhibition
α = 23, KX = 0.28 μM
Küçükkilinç
(2005)
10Cholinesterase
Homo sapiens
3.1.1.8EthopropazineButyrylthiocholineLinear mixed inhibition
α = 8.4, KX = 0.037 μM
Küçükkilinç
(2007)
11Acetylcholinesterase
Electrophorus electricus
3.1.1.7Malachite green AcetylthiocholineLinear mixed inhibition
α = 4.8, KX = 1.9 μM
Küçükkilinç
(2008)
12Coagulation factor XIa
Homo sapiens
3.4.21.27AprotininCoagulation factor IXNon-competitive inhibition
α = 6.3, KX = 0.89 μM
Ogawa
(2005)
13Memapsin 2 (4)
Homo sapiens
3.4.23.46Pepstatin A methylester
pH = 6.5, 22°C
C100 (5)Linear non-competitive inhibition (6)
α = 2.1±1.8, KX = 0.15 μM
Tian
(2002)
14Memapsin 2 (4)
Homo sapiens
3.4.23.46Pepstatin A methylester
pH = 6.5, 37°C
C100 (5)Linear non-competitive inhibition (6)
α = 2.0±0.5, KX = 0.71 μM
Tian
(2002)
15Aldehyde oxidase
Homo sapiens
1.2.3.1DomperidonePhtalazineMixed, predominantly
competitive inhibition
α = 2.6, KX = 5.3 μM
Barr
(2011)
16Aldehyde oxidase
Homo sapiens
1.2.3.1ChlorpromazinePhtalazineMixed, predominantly
competitive inhibition
α = 5.3, KX = 0.62 μM
Barr
(2011)
17Aldehyde oxidase
Homo sapiens
1.2.3.1ClozapinePhtalazineMixed, predominantly
competitive inhibition
α = 15, KX = 3.9 μM
Barr
(2011)
18Spermine synthase
Bos taurus
2.5.1.22Spermine
(reaction product)
SpermidineMixed, predominantly
competitive inhibition
α = 4, KX = 10 μM
Pajula
(1983) (7)
19Spermine synthase
Bos taurus
2.5.1.22 5'-methylthioadenosine
(reaction product)
Decarboxylated
adenosylmethionine
Mixed, predominantly
competitive inhibition
α = 10, KX = 0.2 μM
Pajula
(1983) (7)
20Tyrosinase (8)
Homo sapiens
1.14.18.1Kojic acidL-DopaMixed, predominantly
competitive inhibition
α = 3.9, KX = 145 μM
Sun
(2014) (9)
21Butane-utilizing bacterial
cultures (10)

Butane1,1-dichloroethyleneMixed inhibition
α = 20, KX = 0.23 μM
Kim
(2002)
22Butane-utilizing bacterial
cultures (10)

Butane1,1-dichloroethaneMixed inhibition
α = 1.8, KX = 1.8 μM
Kim
(2002)
23Dipeptidyl-peptidase IV
Homo sapiens
3.4.14.5Lys2-Tat(1-9)
MKPVDPNIE
Ala-Pro-p-nitroanilideLinear mixed type inhibition
α = 10, KX = 42.7 μM
Lorey
(2003) (11)
24Dipeptidyl-peptidase IV
Homo sapiens
3.4.14.5Trp2-Tat(1–9)
MWPVDPNIE
Ala-Pro-p-nitroanilideLinear mixed type inhibition
α = 16, KX = 2.12 μM
Lorey
(2003) (11)
25Dipeptidyl-peptidase IV
Homo sapiens
3.4.14.5Met-Trp1-G-CSF(1–8)
MWPLGPASS
Ala-Pro-p-nitroanilideLinear mixed type inhibition
α = 16, KX = 12.4 μM
Lorey
(2003) (11)
26Dipeptidyl-peptidase IV
Homo sapiens
3.4.14.5Met-IL-2(1–12)
MAPTSSSTKKTQL
Ala-Pro-p-nitroanilideLinear mixed type inhibition
α = 9.4, KX = 269 μM
Lorey
(2003) (11)
27Dipeptidyl-peptidase IV
Homo sapiens
3.4.14.5Met-Trp-Val
MWV
Ala-Pro-p-nitroanilideLinear mixed type inhibition
α = 15, KX = 200 μM
Lorey
(2003) (11)
28Dipeptidyl-peptidase IV
Homo sapiens
3.4.14.5Tat(1–9)
MDPVDPNIE
Ala-Pro-p-nitroanilideParabolic mixed-type inhibition
α = 8.9, γ = 0.3, δ =6.5
KX = 267 μM
Lorey
(2003) (11)(12)
29Dipeptidyl-peptidase IV
Homo sapiens
3.4.14.5Tat(1–9)
MDPVDPNIE
Gly-Pro-R110-CO-(CH2)4Cl (13)Parabolic mixed-type inhibition
α = 0.8, γ = 0.8, δ =2.2
KX = 230 μM
Lorey
(2003) (11)(12)
30Dipeptidyl-peptidase IV
Homo sapiens
3.4.14.5Trp1-Tat(1–9)
WDPVDPNIE
Ala-Pro-p-nitroanilideParabolic mixed-type inhibition
α = 46, γ = 1.5, δ =15
KX = 150 μM
Lorey
(2003) (11)(12)
31Dipeptidyl-peptidase IV
Homo sapiens
3.4.14.5Gly3-Tat(1–9)
MDGVDPNIE
Ala-Pro-p-nitroanilideParabolic mixed-type inhibition
α = 3.7, γ = 0.3, δ =2.2
KX = 487 μM
Lorey
(2003) (11)(12)
32Dipeptidyl-peptidase IV
Homo sapiens
3.4.14.5Ile3-Tat(1–9)
MDIVDPNIE
Ala-Pro-p-nitroanilideParabolic mixed-type inhibition
α = 1.7, γ = 9.2, δ =0.01
KX = 1.75 mM
Lorey
(2003) (11)(12)
33β-Lactamase
Bacillus cereus 5B6
3.5.2.6Compound 6aNitrocefinMixed type inhibition
α = 3.8, KX = 6.6 μM
Siemann
(2002)
34β-Lactamase
Bacillus cereus 5B6
3.5.2.6Compound 11cNitrocefinMixed type inhibition
α = 3.1, KX = 0.7 μM
Siemann
(2002)
35Catechol 1,2-dioxygenase
Acinetobacter baylyi
1.13.11.1 (13)4-Chloroaniline3,4-DichloroanilineMixed inhibition
α = 1.14, KX = 101 μM
Hongsawat
(2011)
36Cruzipain
Tripanosoma cruzi
3.4.22.51FukugetinCbz-Phe-Arg-7-amino-4-methyl
coumarylamide
Partial competitive inhibition
α = 4.5, KX = 1.0 μM
Assis
(2013)
37S-(hydroxymethyl)gluta-
thione dehydrogenase
Homo sapiens
1.1.1.284ResveratrolDoxorubicinMixed type inhibition
α = 2.98, KX = 55.8 μM
Ito
(2013)
38Linoleate 13S-lipoxygenase
Glycine max
1.13.11.12(Z)-9-palmitoleyl
sulfate
Linoleic acidLinear mixed inhibition
α = 10.2, KX = 13.7 μM
Ruddat
(2003)
39NADH:ubiquinone
reductase (H+-translocating)
Escherichia coli
1.6.5.3Zn2+NADredLinear mixed inhibition
α = 1.7, KX = 50 μM
Schulte
(2014)
40Neurolysin
Rattus norvegicus
3.4.24.16R2Internally quenched
peptide containing the
neurotensin sequence
Mixed inhibition, noncompetitive
and competitive components
α = 6.1, KX = 18 μM
Hines
(2014)
41Adenylate cyclase
Homo sapiens
4.6.1.1BithionolATPMixed type inhibition
α = 1.7, KX = 2.3 μM
Kleinboelting
(2016)
42Acetylcholinesterase
Torpedo californica
3.1.1.7EdrophoniumAcetylthiocholineLinear mixed inhibition
α = 7.1, KX = 0.15 μM
Berman
(1990)
43Acetylcholinesterase
Torpedo californica
3.1.1.7PhenyltrimethylammoniumAcetylthiocholineLinear mixed inhibition
α = 5.9, KX = 20 μM
Berman
(1990)
44Acetylcholinesterase
Torpedo californica
3.1.1.7N-MethylacridiniumAcetylthiocholineLinear mixed inhibition
α = 1.9, KX = 46 μM
Berman
(1990)
45Acetylcholinesterase
Torpedo californica
3.1.1.7DecamethoniumAcetylthiocholineLinear mixed inhibition
α = 3.2, KX = 0.56 μM
Pietsch
(2005)
46Acetylcholinesterase
Torpedo californica
3.1.1.7HexamethoniumAcetylthiocholineLinear mixed inhibition
α = 4.2, KX = 13 μM
Pietsch
(2005)
47Acetylcholinesterase
Torpedo californica
3.1.1.7DecyltrimethylammoniumAcetylthiocholineLinear mixed inhibition
α = 8.4, KX = 34 μM
Pietsch
(2005)
48Acetylcholinesterase
Torpedo californica
3.1.1.7HexyltrimethylammoniumAcetylthiocholineLinear mixed inhibition
α = 3.3, KX = 142 μM
Pietsch
(2005)
49Acetylcholinesterase
Torpedo californica
3.1.1.7PropidiumAcetylthiocholineLinear mixed inhibition
α = 1.6, KX = 1.1 μM
Pietsch
(2005)
50Acetylcholinesterase
Torpedo californica
3.1.1.7d-TubocurarineAcetylthiocholineLinear mixed inhibition
α = 3.4, KX = 40 μM
Pietsch
(2005)
51Acetylcholinesterase
Electrophorus electricus
3.1.1.7TacrineAcetylthiocholineLinear mixed type inhibition
α = 1.48, KX = 25 μM
Pietsch
(2005)
52Acetylcholinesterase
Electrophorus electricus
3.1.1.7GalanthamineAcetylthiocholineLinear mixed type inhibition
α = 2.0, KX = 37 μM
Pietsch
(2005)
53Protein-glutamine
gamma-glutamyl-
transferase (14)
Homo sapiens
2.3.2.13Compound 5cCompound 5bLinear mixed, predominantly
specific inhibition
α = 2.0, KX = 585 μM
Wodtke
(2016) (15)
54Tyrosinase
Agaricus bisporus
1.14.18.1Kojic acidL-DopaCompetitive-noncompetitive
inhibition
α = 2.0, KX = 37 μM
Liu
(2017)
55ABC-type quaternary amine transporter
Homo sapiens
7.6.2.9Compound 9γ-Aminobutyric acidCompetitive inhibitionAl-Khawaja
(2014)
56Proton-translocating NAD(P)+ transhydrogenase
Escherichia coli
7.1.1.15'-AMPNADPred
(at fixed 3-acetylpyridine adenine dinucleotide)
Noncompetitive inhibition
α = 2.7, KX = 3.7 μM
Hanson
(1979)
57Pyridoxal 5'-phosphate synthase
(wild type)
Escherichia coli
1.4.3.5Pyridoxal 5'-phosphate
(reaction product)
Pyridoxine 5'-phosphateMixed-type inhibition
α = 12-14, KX = 7.1 μM
Barile (16)
(2019)
58beta-Galactosidase
Escherichia coli
3.2.1.23Glycofullerene 10 (17)p-Nitrophenyl β-D-GalactopyranosideMixed-type inhibition
α = 6.1, KX = 1.8 μM
Abellán Flos
(2016)

(1) Always the varied substrate. In two- or more-substrate reactions the concentration(s) of the non varied substrate(s) is/are kept constant.

(2) Name of the mechanism given by the authors in the quoted reference. α, β and the inhibition/activation constants for the modifier (X), uniformly denoted KX, are the values specified by the authors. In some cases,  missing parameters have been calculated from graphical or tabular data provided in the papers. In two- or more-substrate reactions, KX represents an apparent constant at given concentrations of the fixed substrates and no calculations of the intrinsic values have been attempted.

(3) Full references at the end of the page provide also the digital object identifier (doi), if available. Clicking the authors (highlighted) opens the reference in PubMed.

(4) Memapsin 2 is the recommended name of an enzyme with 82 synonyms (BRENDA, July 2016), including β-secretase and  γ-secretase. It is part of a complex membrane-bound macromolecular complex that involves presenilins 1 and 2.

(5) C100 = Recombinant protein with amino acid sequence identical to the C-terminal fragment of presenilin (cleaved by memapsin 2 from the amyloid precursor protein) bearing an extra methionine residue at the N-terminus.

(6) In this study Tian et al. (2002) paid particular attention to accurate determinations of Kis and Kii, the specific and the catalytic components of the mechanisms, respectively, providing errors and graphical representations. The linearity of inhibition was ascertained experimentally. Taking into account error propagation, these data have been used in this table to calculate α as Kii/Kis with its associated error that, together with graphics, was useful to identify the mechanism. The authors called all mechanisms ‘linear non-competitive inhibition’, which belong however to LMx(Sp>Ca)I, LMx(Sp<Ca)I and LMx(Sp=Ca)I. See also the tables of LMx(Sp<Ca)I and LMx(Sp=Ca)I.

(7) A study dedicated to inhibition of spermine synthase (two substrates-two products reaction) by reaction products that suggests a compulsory-order mechanism in which both substrates bind the enzyme before release of products. See also the pages of LMx(Sp<Ca)I and LSpI.

(8) In this study a truncated, His-tagged form of tyrosinase, which includes the catalytic domain, was used.

(9) This paper by Sun and coworkers is a recommended reading because it is a useful tutorial in the management of enzyme-inhibition kinetic data. The authors fit the general modifier mechanism of Botts and Morales to an entire ensemble of data with a large number of experimental points. The analysis of inhibition mechanism is based on graphical representation of data and on statistical test that include the Akaike information criterion. See also other results from this study under LSpI and LMx(Sp<Ca)I.

(10) Aerobic cometabolism cultures of Gram-positive and Gram-negative bacteria aimed at decontaminating groundwater from chlorinated hydrocarbons. Despite the enzymes responsible for the decontaminating reactions could not be identified, the inhibition results are clear and support the optimization of bacterial growth conditions in plants of water decontamination.

(11) The study by Lorey  et al. (2003) is centered on the inhibition of human dipeptidyl-peptidase IV by the peptide MDPVDPNIE, Tat(1-9), corresponding to the N-terminus of the human immunodeficiency virus-1 transactivator Tat (HIV-1 Tat, which consists of 86 amino acids), and derived peptides. See also cases of linear specific inhibition at the page LSpI.

(12) The entries with colored background represent a mechanism, called by the authors parabolic mixed-type inhibition, which has its roots in linear mixed, predominantly specific inhibition, LMx(Sp>Ca)I. The term parabolic refers to the curved-up slope replot of double-reciprocal plots but the inhibitory nature is still linear since the reaction rate approaches zero at saturating inhibitor concentrations. Further details HERE.

(13) And possibly similar activities in the bacterial culture.

(14) Synonyms: Tissue transglutaminase 2, Transglutaminase 2.

(15) This is the first publication in which the systematics of enzyme-modifier interactions proposed by Baici, including the nomenclature, has been adopted.

(16) A significant example of allosteric product inhibition. This paper is a recommended reading for accurate experimental design, data analysis and discussion that strongly support the results. The mechanism was unequivocally assigned on the basis of all dependencies of the apparent kinetic parameters on modifier concentration.

(17) Complex structure: see Abellán Flos et al. (2016), Supplementary Information, p. 19.


References

  1. Abellán Flos M, García Moreno MI, Ortiz Mellet C, García Fernández JM, Nierengarten J-F, Vincent SP (2016) Potent glycosidase inhibition with heterovalent fullerenes: Unveiling the binding modes triggering multivalent inhibition. Chem Eur J 22: 11450-11460. doi:10.1002/chem.201601673
  2. Al-Khawaja A, Petersen JG, Damgaard M, Jensen MH, Vogensen SB, Lie MEK, Kragholm B, Bräuner-Osborne H, Clausen RP, Frølund B, Wellendorph P (2014) Pharmacological identification of a guanidine-containing β-alanine analogue with low micromolar potency and selectivity for the betaine/GABA transporter 1 (BGT1). Neurochem Res 39: 1988-1996. doi:10.1007/s11064-014-1336-9
  3. Assis DM, Gontijo VS, de Oliveira Pereira I, Santos JA, Camps I, Nagem TJ, Ellena J, Izidoro MA, dos Santos Tersariol IL, de Barros NM, Doriguetto AC, dos Santos MH et al. (2013) Inhibition of cysteine proteases by a natural biflavone: behavioral evaluation of fukugetin as papain and cruzain inhibitor. J Enzyme Inhib Med Chem 28: 661-670. doi:10.3109/14756366.2012.668539
  4. Barile A, Tramonti A, di Salvo ML, Nogués I, Nardella C, Malatesta F, Contestabile R (2019) Allosteric feedback inhibition of pyridoxine 5′-phosphate oxidase from Escherichia coli. J Biol Chem 294: 15593-15603. doi:10.1074/jbc.RA119.009697
  5. Barr JT, Jones JP (2011) Inhibition of human liver aldehyde oxidase: implications for potential drug-drug interactions. Drug Metab Disp 39: 2381-2386. doi:10.1124/dmd.111.041806
  6. Berman HA, Leonard K (1990) Ligand exclusion on acetylcholinesterase. Biochemistry 29: 10640-10649. doi:10.1021/bi00499a010
  7. Chow ML, Troussicot L, Martin M, Doumèche B, Guillière F, Lancelin J-M (2016) Predicting and understanding the enzymatic inhibition of human peroxiredoxin 5 by 4-substituted pyrocatechols by combining funnel metadynamics, solution NMR, and steady-state kinetics. Biochemistry 55: 3469-3480. doi:10.1021/acs.biochem.6b00367
  8. D’Adamio G, Sgambato A, Forcella M, Caccia S, Parmeggiani C, Casartelli M, Parenti P, Bini D, Cipolla L, Fusi P, Cardona F (2015) New synthesis and biological evaluation of uniflorine A derivatives: towards specific insect trehalase inhibitors. Org Biomol Chem 13: 886-892. doi:10.1039/C4OB02016B
  9. Hanson RL (1979) The kinetic mechanism of pyridine nucleotide transhydrogenase from Escherichia coli. J Biol Chem 254: 888-893.
  10. Hines CS, Ray K, Schmidt JJ, Xiong F, Feenstra RW, Pras-Raves M, de Moes JP, Lange JHM, Melikishvili M, Fried MG, Mortenson P, Charlton M et al. (2014) Allosteric Inhibition of the Neuropeptidase Neurolysin. J Biol Chem 289: 35605-35619. doi:10.1074/jbc.M114.620930
  11. Hongsawat P, Vangnai AS (2011) Biodegradation pathways of chloroanilines by Acinetobacter baylyi strain GFJ2. J Hazard Mater 186: 1300-1307. doi:10.1016/j.jhazmat.2010.12.002
  12. Ito Y, Mitani T, Harada N, Isayama A, Tanimori S, Takenaka S, Nakano Y, Inui H, Yamaji R (2013) Identification of carbonyl reductase 1 as a resveratrol-binding protein by affinity chromatography using 4′-amino-3,5-dihydroxy-trans-stilbene. Journal of Nutritional Science and Vitaminology (Tokyo) 59: 358-364. doi:10.3177/jnsv.59.358
  13. Kim Y, Arp DJ, Semprini L (2002) Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture. Biotechnol Bioeng 80: 498-508. doi:10.1002/bit.10397
  14. Kleinboelting S, Ramos-Espiritu L, Buck H, Colis L, van den Heuvel J, Glickman JF, Levin LR, Buck J, Steegborn C (2016) Bithionol potently inhibits human soluble adenylyl cyclase through binding to the allosteric activator site. J Biol Chem 291: 9776-9784. doi:10.1074/jbc.M115.708255
  15. Küçükkilinç T, Özer I (2005) Inhibition of human plasma cholinesterase by malachite green and related triarylmethane dyes: mechanistic implications. Arch Biochem Biophys 440: 118-122. doi:10.1016/j.abb.2005.06.003
  16. Küçükkilinç T, Özer I (2007) Multi-site inhibition of human plasma cholinesterase by cationic phenoxazine and phenothiazine dyes. Arch Biochem Biophys 461: 294-298. doi:10.1016/j.abb.2007.02.029
  17. Küçükkilinç TT, Ozer I (2008) Inhibition of electric eel acetylcholinesterase by triarylmethane dyes. Chem-Biol Interact 175: 309-311. doi:10.1016/j.cbi.2008.05.008
  18. Liu D-M, Yang J-L, Ha W, Chen J, Shi Y-P (2017) Kinetics and inhibition study of tyrosinase by pressure mediated microanalysis. Anal Biochem 525: 54-59. doi:10.1016/j.ab.2017.02.020
  19. Lorey S, Stöckel-Maschek A, Faust J, Brandt W, Stiebitz B, Gorrell MD, Kähne T, Mrestani-Klaus C, Wrenger S, Reinhold D, Ansorge S, Neubert K (2003) Different modes of dipeptidyl peptidase IV (CD26) inhibition by oligopeptides derived from the N-terminus of HIV-1 Tat indicate at least two inhibitor binding sites. Eur J Biochem 270: 2147-2156. doi:10.1046/j.1432-1033.2003.03568.x
  20. Nakanishi M, Moriyama A, Narita Y, Sasaki M (1989) Aminopeptidase-M from human liver. II. Kinetic analysis of inhibition of the enzyme by bile acids. J Biochem 106: 826-830. doi:10.1093/oxfordjournals.jbchem.a122938
  21. Ogawa T, Verhamme IM, Sun MF, Bock PE, Gailani D (2005) Exosite-mediated substrate recognition of factor IX by factor XIa. The factor XIa heavy chain is required for initial recognition of factor IX. J Biol Chem 280: 23523-23530. doi:10.1074/jbc.M500894200
  22. Pajula RL (1983) Kinetic properties of spermine synthase from bovine brain. Biochem J 215: 669-676. doi:10.1042/bj2150669
  23. Pietsch M, Gütschow M (2005) Synthesis of tricyclic 1,3-oxazin-4-ones and kinetic analysis of cholesterol esterase and acetylcholinesterase inhibition. J Med Chem 48: 8270-8288. doi:10.1021/jm0508639
  24. Ruddat VC, Whitman S, Holman TR, Bernasconi CF (2003) Stopped-flow kinetic investigations of the activation of soybean lipoxygenase-1 and the influence of inhibitors on the allosteric site. Biochemistry 42: 4172-4178. doi:10.1021/bi020698o
  25. Schulte M, Mattay D, Kriegel S, Hellwig P, Friedrich T (2014) Inhibition of Escherichia coli respiratory complex I by Zn2+. Biochemistry 53: 6332-6339. doi:10.1021/bi5009276
  26. Siemann S, Evanoff DP, Marrone L, Clarke AJ, Viswanatha T, Dmitrienko GI (2002) N-arylsulfonyl hydrazones as inhibitors of IMP-1 metallo-beta-lactamase. Antimicrobial agents and chemotherapy 46: 2450-2457. doi:10.1128/AAC.46.8.2450-2457.2002
  27. Sun W, Wendt M, Klebe G, Röhm KH (2014) On the interpretation of tyrosinase inhibition kinetics. J Enzyme Inhib Med Chem 29: 92-99. doi:10.3109/14756366.2012.755621
  28. Tian GC, Sobotka-Briner CD, Zysk J, Liu XD, Birr C, Sylvester MA, Edwards PD, Scott CD, Greenberg BD (2002) Linear non-competitive inhibition of solubilized human gamma-secretase by pepstatin a methylester, L685458, sulfonamides, and benzodiazepines. J Biol Chem 277: 31499-31505. doi:10.1074/jbc.M112328200
  29. Wodtke R, Schramm G, Pietzsch J, Pietsch M, Löser R (2016) Synthesis and kinetic characterisation of water-soluble fluorogenic acyl donors for transglutaminase 2. ChemBioChem 17: 1263-1281. [Corrigendum: ChemBioChem 2016, 17, 1674]. doi:10.1002/cbic.201600048